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Abstract

The potential that generates the cohomology ring of the Grassmannian is given in terms of the
elementary symmetric functions using the Waring formula that computes the power sum of roots
of an algebraic equation in terms of its coefficients. As a consequence, the fusion potential for
su(N)K is obtained. This potential is the explicit Chebyshev polynomial in several variables of
the first kind. We also derive the fusion potential forsp(N)K from a reciprocal algebraic equation.
This potential is identified with another Chebyshev polynomial in several variables. We display
a connection between these fusion potentials and generalized Fibonacci and Lucas numbers. In
the case ofsu(N)K the generating function for the generalized Fibonacci numbers obtained are
in agreement with Lascoux using the theory of symmetric functions. Forsp(N)K , however, the
generalized Fibonacci numbers are obtained from new sequences. © 2001 Elsevier Science B.V.
All rights reserved.
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1. Introduction

In the work of Gepner [1], the fusion potential forsu(N)K was obtained as a perturbation
of the Landau–Ginzberg potential that generates the cohomology ring of the Grassmannian.
This implies that the fusion ring forsu(N)K and the cohomology ring of the Grassman-
nian are connected. The connection of these two rings may be understood as follows: Lesieur
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[2] noticed that the rules of multiplying Schubert cycles [3], which are the generators of
the homology ring of the Grassmannian, formally coincide with the rules for multiplying
Schur functions [4]. On the other hand, the characters of the irreducible representation
of su(N) turn out to be given by the Schur functions [5] with some constraint which is
exactly the perturbation mentioned above. Therefore, we learn that the product of characters
is the same as a product of Schur functions with this constraint which, in turn, implies
the connection between the cohomology ring for the Grassmannian and fusion ring for
su(N)K .

The potential that generates the cohomology ring of the Grassmannian turns out to be
given by a power sum symmetric function in the Chern roots [6] that we identify with the
roots of an algebraic equation, say of degreer, i.e., of the form

yr + a1y
r−1 + · · · + ar−1y + ar = 0. (1)

Geometrically, the degreer is the rank of the quotient bundle on the Grassmannian and
the coefficients of the algebraic equation (elementary symmetric functions) correspond to
the Chern classes of this bundle. With this interpretation in mind, the algebraic equation
(1) is nothing but the definition of the Chern classes of a vector bundle of rankr given
by Grothendieck [7], wherey is identified with the fundamental class of degree 2 on the
associated projective bundle.

In this paper, we use the Waring formula to express the power sum symmetric func-
tion in the Chern roots in terms of the elementary symmetric functions and hence ob-
tain the cohomology potential for the Grassmannian and the fusion potentials forsu(N)K

andsp(N)K . The algebraic equation from which thesu(N)K fusion potential is obtained
is the one for whichr = N and aN = 1, whereas, forsp(N)K , it turns out to be a
reciprocal algebraic equation [8] of order 2N , with the last coefficient equal to 1 and
a2N−i = ai .

In our formulation, the fusion potential written in terms of the elementary symmetric
functions is the explicit generalization of the Chebyshev polynomial of one variable. Simi-
larly, for the case ofsp(N)K , we obtain another Chebyshev polynomial in several variables.
The one-variable Chebyshev polynomials of the first kind and second kind are known to be
related to the ordinary Lucas numbers and Fibonacci numbers, respectively. In this paper,
we find a relation to the generalized Fibonacci and Lucas numbers for the cases studied
here.

Our paper is organized as follows: Section 2 gives a brief account of the cohomology ring
in order to recall some facts and fix the notation. Section 3 will be devoted to the cohomology
ring potential and its connection with the fusion ring forsu(N)K . The connection of the
later with the generalized Chebyshev polynomial and the numbers of Fibonacci and Lucas
will also be discussed. In Section 4, we will consider thesp(N)K fusion potential and its
connection with the reciprocal algebraic equation. Here, we will find that the Chebyshev
polynomial associated withsp(N)K is different from the one forsu(N)K for N 6= 1. In this
case, the Fibonacci and Lucas numbers are of degree 2N . Our conclusions are outlined in
Section 5.
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2. The cohomology ring

In this section, we will recall briefly the definition of the cohomology ring of the Grass-
mannian [9] and the corresponding Landau–Ginzburg formulation [1,6] in order to fix our
notation. The complex Grassmannian manifold here denoted byGr(C

n) is the space of
r-planes inCn, its cohomology ring denoted byH ∗(Gr(C

n)) is a truncated polynomial
ring in several variables given by

H ∗(Gr(C
n)) ∼= C[x1, . . . , xr , y1, . . . , yn−r ]

I
, (2)

wherexi = ci(Q) (for 1 ≤ i ≤ r) are the Chern classes of the quotient bundleQ of rank
r, i.e.,xi ∈ H 2i (Gr(C

n)) andyj = cj (S) (for 1 ≤ j ≤ n − r) are the Chern classes of the
universal bundleS of rankn − r. The idealI in C[x1, . . . , xr , y1, . . . , yn−r ] is given by

(1 + x1 + x2 + · · · + xr)(1 + y1 + y2 + · · · + yn−r ) = 1, (3)

which is the consequence of the tautological sequence onGr(C
n):

0 → S → V → Q → 0,

whereV = Gr(C
n) × Cn. By using Eq. (3), one may rewriteH ∗(Gr(C

n)) as

H ∗(G(Cn)) ∼= C[x1, . . . , xr ]

yj

, (4)

whereyj are expressed in terms ofxi , andyj = 0 for n− r +1 ≤ j ≤ n, andx0 = y0 = 1.
The classesyj can be written inductively as a function ofx1, . . . , xr via

yj = −x1yj−1 − · · · − xj−1y1 − xj for j = 1, . . . , n − r. (5)

We will give later on an explicit formula for theyj ’s in terms of thexi ’s without the use of
induction.

In the Landau–Ginzburg formulation, the potential that generates the cohomology ring
of the Grassmannian as explained in [1,6,10] is given by

Wn+1(x1, . . . , xr ) =
r∑

i=1

qn+1
i

n + 1
, (6)

wherexi andqi are related by

xi =
∑

1≤l1<l2<···<li≤r

ql1ql2 · · · qli . (7)

Usually the description of the cohomology ring is given in terms of theqi variables, however,
in the next section, we will write down the potential in terms of thexi ’s, i.e., as a solution to
the above system of equations. Note that, as was shown explicitly in [10], the cohomology
ring of the Grassmannian is given by

∂Wn+1

∂xi

= (−1)nyn+1−i for 1 ≤ i ≤ r, (8)

implying that diWn+1 = 0 for i = 1, . . . , r.
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3. The cohomology ring potential

A formula for the Landau–Ginzburg potentialWn+1(x1, . . . , xr ) is given in terms of the
generators ofH ∗(Gr(C

n)), and when we consider the potentialWn(x1, . . . , xr ) instead with
n = N +k, r = N andxN = 1 we obtain the fusion potential of thesu(N)K [1]. The fusion
potential in this formulation is the explicit generalized Chebyshev polynomial in several
variables. The ordinary Fibonacci and the Lucas numbers are known to be connected to
Chebyshev polynomial of the second kind and the first kind, respectively [13]. Here we will
find the connection between the fusion potential of thesu(N)K algebra and thekth order
Fibonacci and the Lucas numbers. The following formulae for the potential, the classesyj

in terms of thexi classes and, in general, the connection between Segre classes of any vector
bundle of rankn in terms of Chern classes are first proposed, and then later proved using
the theory of symmetric functions [11].

Proposition 1. The potentialWn+1(x1, . . . , xr ) that generates the cohomology ring of the
GrassmannianH ∗(Gr(C

n)) in terms of the generatorsxi = ci(Q) for 1 ≤ i ≤ r is given
by the formula

Wn+1(x1, . . . , xr ) =
[(n+1)/2]∑

k1=0

· · ·
[(n+1)/r]∑
kr−1=0

(−1)k1+2k2+···+(r−1)kr−1

k1! · · · kr−1!

× (n −∑r−1
j=1jkj )!

(n + 1 −∑r
j=2jkj−1)!

x
n+1−2k1−···−rkr−1
1 x

k1
2 · · · xkr−1

r . (9)

The above formula reduces to the fusion potential of su(N)K algebra when we consider
the potentialWn(x1, . . . , xr ) instead, withn = N + k, r = N and xN = 1 which in
turn is the explicit multidimensional analogue of Chebyshev polynomial of the first kind.
Finally the fusion potential and the multidimensional analogue of the Chebyshev polynomial
of the second kind are shown to be related thekth order Lucas and Fibonacci numbers,
respectively.

To prove the above formula, we use the fundamental theorem on symmetric functions
[4], which states that any symmetric function can be written as a polynomial in the ele-
mentary symmetric functions. The potential for the cohomology ring of the Grassmannian,
H ∗(Gr(C

n)) is generated by

Wn+1(x1, . . . , xr ) =
r∑

i=1

qn+1
i

n + 1
,

i.e., the power sum symmetric functions in the Chern roots,qi . 1 From [11], we learn
that there is an explicit formula for the power sum in terms of the elementary symmetric
functions. As a matter of fact, this formula was given by Waring [8,12] in connection with

1 qi are the formal variables satisfying
∑r

i=0xi t
i = ∏r

i=1(1 + qi t).
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the theory of algebraic equations in which he found a general expression for the power sum
of the roots of an algebraic equation of orderr in terms of its coefficients. This formula
reads as

sn = n
∑

(−1)n+l1+···+lr
(l1 + · · · + lr − 1)!

l1! · · · lr ! x
l1
1 · · · xlr

r , (10)

wheresn denotes the power sum, thexi ’s are the elementary symmetric functions, and the
summation is taken over all positive integers or zero such thatl1 + 2l2 + · · · + rl r = n.

It is clear from Eq. (10) that we obtain the formula for the cohomology potential given
by Eq. (9): simply shiftn to n + 1 in Eq. (10), setl1 = n + 1− 2l2 − · · · − rl r and now by
making the change of variablesl2 = k1, . . . , lr = kr−1, the formula is obtained. To prove
that the potentialWn+1(x1, . . . , xr ) generates the cohomology ring, we need the following
formula that relates the Chern classes of the universal bundle,yj , to the Chern classes of
the quotient bundlexi

yj = (−1)j
[j/2]∑
k1=0

· · ·
[j/r]∑

kr−1=0

(−1)k1+2k2+···+(r−1)kr−1

k1! · · · kr−1!

× (j −∑r−1
l=1 lkl )!

(j −∑r
l=2lkl−1)!

x
j−2k1−···−rkr−1
1 x

k1
2 · · · xkr−1

r . (11)

Again we can use the theory of symmetric functions to prove the equation. This time how-
ever, we use the relation between the homogeneous product sum (also called the completely
symmetric functions) and the elementary symmetric functions. The Segre classes, denoted
by sj , of a vector bundle of rankn has an expression similar to that for the Chern classes of
the universal bundle but withr = n and withj allowed to take the values 1, 2, . . . , n. Now
the proof thatWn+1(x1, . . . , xr ) generates the cohomology ring follows by differentiating
this potential with respect toxi, 1 ≤ i ≤ r. Thus, we obtain

∂Wn+1

∂xi

= (−1)i−1
[(n+1−i)/2]∑

k1=0

· · ·
[(n+1−i)/r]∑

kr−1=0

(−1)k1+2k2+···+(r−1)kr−1

k1! · · · kr−1!

× (n + 1 − i −∑r−1
j=1jkj )!

(n + 1 − i −∑r
j=2jkj−1)!

x
n+1−i−2k1−···−rkr−1
1 x

k1
2 · · · xkr−1

r . (12)

From Eq. (11), we see thatyn+1−i is exactly the expression for∂Wn+1/∂xi up to (−1)n

which is zero fori = 1, . . . , r, by definition of the cohomology ring. Therefore,∂Wn+1/

∂xi = (−1)nyn+1−i implying that diW = 0 for i = 1, . . . , r. This shows the isomorphism
between the usual definition of the cohomology ring of the GrassmannianH ∗(Gr(C

n)) and
the Landau–Ginzburg formulation.

Now, we come to the connection between the cohomology potential and fusion potential
of su(N)K algebra. We consider the potentialWn(x1, . . . , xr ) with n = N + k, r = N and



N. Chair / Journal of Geometry and Physics 37 (2001) 216–228 221

setxN = 1 in the expression ofWn(x1, . . . , xr ) to obtain the following potential:

WN+K(x1, . . . , xN = 1)

=
[(N+K)/2]∑

k1=0

· · ·
[(N+K)/N ]∑

kN−1=0

(−1)k1+2k2+···+(N−1)kN−1

k1! · · · kN−1!

× (N + K − 1 −∑N−1
j=1 jkj )!

(N + K −∑N
j=2jkj−1)!

x
N+K−2k1−···−NkN−1
1 x

k1
2 · · · xkN−2

N−1 , (13)

this potential is no longer quasihomogeneous. The quasihomogeneous part of this potential
is obtained by settingkN−1 = 0. To see that this potential is the natural analogue of
Chebyshev polynomial of the first kind in several variables, we specialize the potential to
the case ofsu(2)K and find

(2 + K)W2+K(x) = (2 + K)

[(K+2)/2]∑
l=0

(−1)l

l!
× (k + 1 − l)!

(k + 2 − 2l)!
xK+2−2l . (14)

By settingn = K + 2, one has

nWn(x) = n

[n/2]∑
l=0

(−1)l

l!
× (n − 1 − l)!

(n − 2l)!
xn−2l . (15)

This is exactly the Chebyshev polynomial of the first kind [13]. In this representation the
Chebyshev polynomial is monic and with integer coefficients.

It remains to be seen that the analogue of the Chebyshev polynomial of the first kind in
several variables is the fusion ring of thesu(N)K algebra. This is a simple consequence
of the relation between our cohomology potential and the Chern classes of the universal
bundleS. By using Eq. (12) in thesu(N)K case, one has

yN+K−i = (−1)i+1∂WN+K−i

∂xi

for 1 ≤ i ≤ N − 1, (16)

which is the ideal of the fusion ring forsu(N)K [1]. Therefore the fusion ring forsu(N)K

is R = C[x1, . . . , xN−1]/(yK+1, yK+2, . . . , yK+N−1). In terms of Young tableaux, this is
equivalent to setting to zero all reduced tableaux (no columns withN boxes) for which the
first row has length equal toK + 1, this is the level truncation. When the Giambeli-like
formula [1] is applied to the completely symmetric representation, the fusion ideal for
su(N)K reads

[1, . . . , 1]︸ ︷︷ ︸
j

= detx1+l−s for 1 ≤ l, s ≤ j, K + 1 ≤ j ≤ N + K − 1. (17)

Therefore the completely symmetric functionyj given by (11) is the explicit expression for
the Giambeli-like formula when restricted to [1, . . . , 1] (with j entries), whereK + 1 ≤
j ≤ N + K − 1.



222 N. Chair / Journal of Geometry and Physics 37 (2001) 216–228

From [1] we learn that there are two ways to obtain the fusion potential forsu(N)K

algebra. One way is to use the following expression:

WN+K(x1, . . . , xN = 1) = (−1)N+K dN+K

(N + K)! dtN+K
log

(
N∑

i=0

(−1)ixi t
i

)∣∣∣∣∣
t=0

(18)

with x0 = xN = 1. Alternatively, we use the recursion relation satisfied by the potential

N∑
i=0

(−1)ixi(N + s − i)WN+s−i = 0. (19)

Therefore, our expression for the fusion potential is simpler and more transparent. It gives
the integrability of the Chern classesyj (completely symmetric functions) to a potential
as a consequence of the cohomology of the Grassmannian. Furthermore, from our fusion
potential which is the explicit Chebyshev polynomial of the first kind in several variables,
one can read off directly thesu(N)K fusion potential for anyN andK.

Before we make the connection between the fusion potential ofsu(N)K algebra and the
Fibonacci numbers and Lucas numbers ofkth order, we will first give the definition of these
numbers. We will then recall the connection between the ordinary Fibonacci and Lucas
numbers with the Chebyshev polynomial of one variable.

Definition 1. Thekth order Fibonacci numbersFn+1 and Lucas numbersLn are defined,
respectively, byFn+1 = Fn + Fn−1 + · · · + Fn−k, Ln = Ln−1 + Ln−2 + · · · + Ln−k, with
the initial conditionsF−k+1 = · · · = F−1 = 0 and similarly for theLn’s.

Fork = 2, these are the definitions of the ordinary Fibonacci and Lucas numbers which
are given byFn+1 = Fn + Fn−1 andLn = Ln−1 + Ln−2, i.e., any number is the sum of
the previous two. The Chebyshev polynomial of the second kindU(x/2) is known to be
related to the ordinary Fibonacci numbers, and the Chebyshev polynomial of the first kind
T (x/2) is known to be related to the Lucas numbers [13] via the following specializations:

Fn+1 = Sn(i)

in
, n = 0, 1, . . . (i2 = −1), (20)

where

Sn(x) = U
(x

2

)
=

[n/2]∑
k=0

(−1)k
(

n − k

k

)
xn−2k, (21)

and

Ln = Cn(i)

in
, n = 0, 1, . . . , (22)

where

Cn(x) = 2T
(x

2

)
=

[n/2]∑
k=0

(−1)k
n

n − k

(
n − k

k

)
xn−2k. (23)
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By applying a similar procedure, the analogue of the Chebyshev polynomial of the second
kind in several variables and the fusion potential reduce to the following two sequences of
numbers, respectively:

Fn+1 =
[n/2]∑
l1=0

· · ·
[n/k]∑

lk−1=0

1

l1! · · · lk−1!

(n −∑k−1
j=1jl j )!

(n −∑k
j=2jl j−1)!

, (24)

Ln = n

[n/2]∑
l1=0

· · ·
[n/k]∑

lk−1=0

1

l1! · · · lk−1!

(n − 1 −∑k−1
j=1jl j )!

(n −∑k
j=2jl j−1)!

. (25)

One can see that these numbers are indeed those given in the definition above, for example,
for k = 2 they are the ordinary Fibonacci and Lucas numbers, respectively. Fork = 3 we
have the third order Fibonacci and Lucas numbers and we have computed the first few of
them as given below

F
(3)
n+1 = 1, 1, 2, 4, 7, 13, 24, 44, 81, . . . , (26)

L(3)
n = 1, 3, 7, 11, 21, 39, 71, 131, . . . . (27)

In terms of the levelK, and for a fixed value ofN in thesu(N)K , one can see that the
first term in the Fibonacci sequence will start atn = N + K + 1, whereas that of the Lucas
sequence will start atn = N + K, andN is identified with the order of these two series.

The formula given above corresponding tokth order Fibonacci numbers is in full agree-
ment with that obtained by Lascoux [14] in which he showed by using the theory of sym-
metric functions thatkth order Fibonacci numbers are given by the following multinomial

Fn+1 =
∑
I

(
`(I )

m1, . . . , mk

)
, (28)

where the summation is taken over all partitionsI = 1m12m2 · · · of weight n = m1 +
2m2 + · · · + kmk and`(I ) is the length of the partitionm1 + m2 + · · · + mk.

The equivalence of our formula for thekth order Fibonacci numbers and those given by
Lascoux follows by expanding the multinomial (28), and fixingm1 asm1 = n−2m2−· · ·−
kmk and then changing the variables as we did before to obtain the cohomology potential.

Although the expression for thekth order Lucas number were not given in [14], we can
see however that the equivalent formula for these numbers is

Ln = n
∑
I

(
`(I ) − 1

m1, . . . , mk

)
. (29)

4. sp(N)Ksp(N)Ksp(N)K fusion potential and the reciprocal algebraic equation

We recall from the last section that the Waring formula computes the power sum of roots
of an algebraic equation in terms of its coefficients. These coefficients are identified with
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the elementary symmetric functions in terms of the Chern roots, they are given byxi =∑
l≤l1,...,li≤rql1ql2 · · · qli . The algebraic equation from which one computes the cohomology

ring potential has the form

yr + a1y
r−1 + · · · + ar−1y + ar = 0, (30)

where the coefficientsai are identified with the elementary symmetric functions, and the
roots of this algebraic equation areqi for i = 1, . . . , r.

The fusion potential for thesu(N)K algebra may be obtained from the following algebraic
equation:

yN + a1y
N−1 + · · · + aN−1y + 1 = 0. (31)

The last coefficient is set equal to 1 due to the constraintsxN = q1q2 . . . qN = 1, which in
turn corresponds to the fact that the determinant of the maximal torus ofSU(N) group is
the identity. The diagonal elements of this torus areqi = ei(θi−θi−1) for i = 1, . . . , N with
the conventionθ0 = θN = 1. With this motivation in mind, one would like to know whether
one can write down an algebraic equation corresponding to groups other thanSU(N), in
particular, the unitary symplectic groupSp(N). Having written down such an algebraic
equation, the fusion potential for thesp(N)K algebra is obtained using the Waring formula.
This turns out to be true as we will shortly see.

From [15] we learn that anyn × n unitary symplectic matrix (withn = 2m) can be
diagonalized with diagonal elements of the formqi andq−1

i for i = 1, . . . , m, and with
determinant equal to 1. Therefore the algebraic equation that we are looking for is the one for
which bothqi andq−1

i are roots and where the last coefficient is equal to 1. Such algebraic
equations are called reciprocal equations of the first class [8]. In our case, this algebraic
equation has the form

y2m + a1(y
2m−1 + y) + a2(y

2m−2 + y2) + · · · + amym + 1 = 0, (32)

whereai = a2m−i . Note that in this case, the elementary symmetric functions are functions
of bothqi andq−1

i that we denote byEi . Now, the natural power sum to consider for the
reciprocal algebraic equation has the form

Wn(E1, . . . , Em) = 1

n

m∑
i=1

(qn
i + q−n

i )

as bothqi andq−1
i are roots of Eq. (32). This is exactly the form proposed by Gepner and

Schwimmer [16]. Therefore, by applying the Waring formula to this expression, one obtains

Wn(E1, . . . , Em) =
[n/2]∑
k1=0

· · ·
[n/2m]∑

k2m−1=0

(−1)k1+2k2+···+(2m−1)k2m−1

k1! · · · k2m−1!

× (n − 1 −∑2m−1
l=1 lkl )!

(n −∑2m
l=2lkl−1)!

E
g(n,m)

1 E
k1+k2m−1
2 · · · Ekm−1

m , (33)
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whereg(n, m) = n − 2k1 − · · · − (2m − 2)k2m−2 − 2mk2m−1. In obtaining the above
equation, we have used the conditionl1 + 2l2 + · · · + 2ml2m = n, and the change of
variablesl2 = k1, . . . , l2m = k2m−1.

In the following we will briefly recall the classical tensor ring forsp(N) and the modified
fusion ring [17,18], namely, thesp(N)K algebra and hence write explicitly the
fusion potential for the latter. The classical tensor ring forsp(N) is the finite ring,
R = C[χ1, . . . , χN ]/IC, whereχj are the characters of the fundamental representation
corresponding to a single column of lengthj . These characters are related to the elemen-
tary symmetric functionEj [19] by

χj = Ej − Ej−2. (34)

The classical idealIC is obtained by using this equation with the property thatEj = E2N−j

andE0 = E2N = 12 , which follows from its generating function [19]:

E(t) =
∞∑

j=0

Ej t
j =

N∏
i=1

(1 + qit)(1 + q−1
i t). (35)

Therefore, the classical idealIC is given by

χN+1 = 0, χN+2 + χN = 0, . . . , χj + χ2N+2−j = 0.

Thesp(N)K fusion ring is obtained by a further modification of the classicalsp(N) tensor
ring in which tableaux with more thanK columns are eliminated. This is equivalent to
writing thesp(N)K -fusion ring asR = C[χ1, . . . , χN ]/If , where the idealIf is given by

JK+1 = 0, JK+2 + JK = 0, . . . , JK+N + JK−N+2 = 0. (36)

Jj represents the character of the single row tableaux of lengthj which is a completely
symmetric function whose generating function is [19]

J (t) =
∞∑

j=0

Jj t
j =

N∏
i=1

1

(1 − qit)(1 − q−1
i t)

. (37)

SinceE(t)J (−t) = 1, the completely symmetric functions can be written in terms of the
elementary symmetric functions as will be given explicitly below.

The truncation given by Eq. (36) can be written as the ideal generated by setting to zero the
derivative of the potentialWn (33) for certain values ofn andm. This means that the fusion
ring for sp(N)K can be written asR = C[χ1, . . . , χN ]/dWn. To see this we differentiate
the potentialWn with respect toEi finding:

∂Wn

∂Ei

=
{

(−1)i+1(Jn−i + Jn+i−2m) for 1 ≤ i ≤ n − 1,

(−1)i+1Jn−i for i = m,
(38)

2 This is exactly the condition that follows from a reciprocal algebraic equation of degree 2N , with the last
coefficienta2N = 1.
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whereJj is given explicitly by

Jj = (−1)j
[j/2]∑
k1=0

· · ·
[j/2m]∑

k2m−1=0

(−1)k1+2k2+···+(2m−1)k2m−1

k1! · · · k2m−1!

× (j −∑2m−1
l=1 lkl )!

(j −∑2m
l=2lkl−1)!

E
j−2k1−···−(2m−2)k2m−2−2mk2m−1
1 E

k1+k2m−3
2 · · · Ekm−1

m . (39)

From Eq. (38), we see that the critical points of the potentialWn, ∂Wn/∂Ei = 0 do indeed
correspond to the fusion idealIf providedn = N + K + 1 andm = N .

The fusion potential forsp(N)K algebra is obtained by using the relationχj = Ej −Ej−2.
Settingχ1 = x andχ2 = y, the fusion potentials forsp(1)K andsp(2)K are

(2 + K)W2+K(x) = (2 + K)

[(K+2)/2]∑
l=0

(−1)l

l!

(K + 1 − l)!

(K + 2 − 2l)!
xK+2−2l , (40)

and

(3 + K)W3+K(x) = (3 + K)

[(K+3)/2]∑
k1=0

[(K+3)/3]∑
k2=0

[(K+3)/4]∑
k3=0

(−1)k1+2k2+3k3

k1!k2!k3!

× (2 + K − k1 − 2k2 − 3k3)!

(3 + K − 2k1 − 3k2 − 4k3)!
x3+K−2k1−2k2−4k3(1 + y)k1.

(41)

From Eq. (40) we see that this is the Chebyshev polynomial of the first kind forsu(2)K as
it should be, sincesp(1) = su(2). For levelsK = 1 andK = 2, Eq. (41) gives the following
potentials: 4W4 = x4 − 4x2y + 2y2 + 4y − 2 and 5W5 = x5 − 5x3y + 5xy2 + 5xy− 5x.
These were the potentials obtained in [16] using the recursion relations.

The generalized Chebyshev polynomial in several variables forsp(N)K is obtained from
the power sumWn given in Eq. (33) withn = N + K + 1 andm = N ,

W(E1, . . . , EN) =
[(N+K+1)/2]∑

k1=0

· · ·
[(N+K+1)/2N ]∑

k2N−1=0

(−1)k1+2k2+···+(2N−1)k2N−1

k1! · · · k2N−1!

× (N + K −∑2N−1
l=1 lkl )!

(N + K + 1 −∑2N
l=2lkl−1)!

E
f (N,K)

1 E
k1+k2N−1
2 · · · EkN−1

N ,

(42)

wheref (N, K) = N + K + 1− 2k1 − · · · − (2N − 2)k2N−2 − 2Nk2N−1. This is different
from the generalized Chebyshev polynomial in several variables forsu(N)K for N 6= 1.
The above results can be stated by the following proposition.

Proposition 2. The fusion potential for the sp(N)K algebra is obtained from the power
sum of the roots of a reciprocal algebraic equation of degree2N , the last coefficient of
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which is1. The associated generalized Chebyshev polynomial of the first kind in terms of
the elementary symmetric functions is given by Eq.(42).

From the expression for the Chebyshev polynomial in several variables (42), one notes
that the Lucas numbers are of order 2N . Therefore these sequences are the same as those
associated withsu(N)K withN even. The difference however is that in the latter the sequence
starts atn = 2N + K, whereas that associated withsp(N)K starts atn = N + K + 1.
The point that is interesting to note is that the Fibonacci numbers associated tosp(N)K

are combinations of two Fibonacci numbers. One can see this from (38) by considering
the analogue of the Chebyshev polynomial that is associated withsp(N)K of the second
kind. These numbers follow from∂WN+K+1/∂E1 = JK+N +JK−N+2, N 6= 1, to give the
following Fibonacci type sequences of order 2N .

F̃N+K+2 = FN+K+1 − FK−N+3, (43)

where

Fj =
[j/2]∑
k1=0

· · ·
[j/2N ]∑

k2N−1=0

1

k1! · · · k2N−1!

(j −∑2N−1
l=1 lkl )!

(j −∑2N
l=2lkl−1)!

. (44)

As an example we have computed the Fibonacci numbers associated withsp(2)K using
Eq. (43). The first few numbers are given below:

3, 5, 10, 19, 37, 71, 137, . . . , (45)

where the first term in this sequence corresponds formally toK = 0. We see that this
sequence is a fourth order sequence and is different from the one obtained forsu(4)K . In
fact the sequence given by Eq. (45) is a new sequence [20] and therefore the higher order
sequences form new sequences given by Eq. (43).

5. Conclusions

In this paper we have seen that the cohomology potential that generates the cohomology
ring of the GrassmannianGr(C

n), the fusion potentials forsu(N)K and that forsp(N)K

are obtained from suitable algebraic equations using the Waring formula (10) that computes
the power sum of roots in terms of the elementary symmetric functions. The roots of these
algebraic equations are in one-to-one correspondence with the elements of the diagonalized
form of the unitary matrix groupsU(N), SU(N) andSp(N).

In this algebraic formulation we see clearly that the isomorphism of Lie algebras should
be translated into the identification of the corresponding algebraic equations. For example
su(2) andsp(1) have the same algebraic equations which follow from Eqs. (31) and (32).
As sp(2) = so(5) the fusion potential forso(5)K should be given by Eq. (41) and hence the
corresponding algebraic equation is

y4 + χ1(y
3 + y) + (χ2 + 1)y2 + 1 = 0, (46)
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indeed this is the case [21], whereχ1 is replaced by the spin characterB = (q
1/2
1 +

q
−1/2
1 )(q

1/2
2 + q

−1/2
2 ) andχ2 is replaced bye1 = q1 + q−1

1 + q2 + q−1
2 + 1. Therefore

algebraic equations could be used for classifying fusion rings.
In this paper we also obtained an explicit connection between the fusion potentials and

the Chebyshev polynomial in several variables forsu(N)K , which would be difficult to see
in the formulation of [1,16]. These polynomials were shown to be related to the Fibonacci
and the Lucas numbers. In the case ofsp(N)K the Fibonacci numbers are of order 2N and
appear to be new as they are different from those ofsu(N)K of the same order, however the
Lucas numbers in both cases have the same order and belong to the same sequence.

We will see in our paper [22] where we showed that the ordinary Fibonacci numbers arise
as intersections numbers on the moduli space of the holomorphic map from the sphereCP1

into the GrassmannianG2(C
5).
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